21 research outputs found

    Dense Associative Memory is Robust to Adversarial Inputs

    Full text link
    Deep neural networks (DNN) trained in a supervised way suffer from two known problems. First, the minima of the objective function used in learning correspond to data points (also known as rubbish examples or fooling images) that lack semantic similarity with the training data. Second, a clean input can be changed by a small, and often imperceptible for human vision, perturbation, so that the resulting deformed input is misclassified by the network. These findings emphasize the differences between the ways DNN and humans classify patterns, and raise a question of designing learning algorithms that more accurately mimic human perception compared to the existing methods. Our paper examines these questions within the framework of Dense Associative Memory (DAM) models. These models are defined by the energy function, with higher order (higher than quadratic) interactions between the neurons. We show that in the limit when the power of the interaction vertex in the energy function is sufficiently large, these models have the following three properties. First, the minima of the objective function are free from rubbish images, so that each minimum is a semantically meaningful pattern. Second, artificial patterns poised precisely at the decision boundary look ambiguous to human subjects and share aspects of both classes that are separated by that decision boundary. Third, adversarial images constructed by models with small power of the interaction vertex, which are equivalent to DNN with rectified linear units (ReLU), fail to transfer to and fool the models with higher order interactions. This opens up a possibility to use higher order models for detecting and stopping malicious adversarial attacks. The presented results suggest that DAM with higher order energy functions are closer to human visual perception than DNN with ReLUs

    Unsupervised Learning by Competing Hidden Units

    Full text link
    It is widely believed that the backpropagation algorithm is essential for learning good feature detectors in early layers of artificial neural networks, so that these detectors are useful for the task performed by the higher layers of that neural network. At the same time, the traditional form of backpropagation is biologically implausible. In the present paper we propose an unusual learning rule, which has a degree of biological plausibility, and which is motivated by Hebb's idea that change of the synapse strength should be local - i.e. should depend only on the activities of the pre and post synaptic neurons. We design a learning algorithm that utilizes global inhibition in the hidden layer, and is capable of learning early feature detectors in a completely unsupervised way. These learned lower layer feature detectors can be used to train higher layer weights in a usual supervised way so that the performance of the full network is comparable to the performance of standard feedforward networks trained end-to-end with a backpropagation algorithm

    Neuron-Astrocyte Associative Memory

    Full text link
    Astrocytes, a unique type of glial cell, are thought to play a significant role in memory due to their involvement in modulating synaptic plasticity. Nonetheless, no existing theories explain how neurons, synapses, and astrocytes could collectively contribute to memory function. To address this, we propose a biophysical model of neuron-astrocyte interactions that unifies various viewpoints on astrocyte function in a principled, biologically-grounded framework. A key aspect of the model is that astrocytes mediate long-range interactions between distant tripartite synapses. This effectively creates ``multi-neuron synapses" where more than two neurons interact at the same synapse. Such multi-neuron synapses are ubiquitous in models of Dense Associative Memory (also known as Modern Hopfield Networks) and are known to lead to superlinear memory storage capacity, which is a desirable computational feature. We establish a theoretical relationship between neuron-astrocyte networks and Dense Associative Memories and demonstrate that neuron-astrocyte networks have a larger memory storage capacity per compute unit compared to previously published biological implementations of Dense Associative Memories. This theoretical correspondence suggests the exciting hypothesis that memories could be stored, at least partially, within astrocytes instead of in the synaptic weights between neurons. Importantly, the many-neuron synapses can be influenced by feedforward signals into the astrocytes, such as neuromodulators, potentially originating from distant neurons.Comment: 18 pages, 2 figure

    Sparse Distributed Memory is a Continual Learner

    Full text link
    Continual learning is a problem for artificial neural networks that their biological counterparts are adept at solving. Building on work using Sparse Distributed Memory (SDM) to connect a core neural circuit with the powerful Transformer model, we create a modified Multi-Layered Perceptron (MLP) that is a strong continual learner. We find that every component of our MLP variant translated from biology is necessary for continual learning. Our solution is also free from any memory replay or task information, and introduces novel methods to train sparse networks that may be broadly applicable.Comment: 9 Pages. ICLR Acceptanc

    Long Sequence Hopfield Memory

    Full text link
    Sequence memory is an essential attribute of natural and artificial intelligence that enables agents to encode, store, and retrieve complex sequences of stimuli and actions. Computational models of sequence memory have been proposed where recurrent Hopfield-like neural networks are trained with temporally asymmetric Hebbian rules. However, these networks suffer from limited sequence capacity (maximal length of the stored sequence) due to interference between the memories. Inspired by recent work on Dense Associative Memories, we expand the sequence capacity of these models by introducing a nonlinear interaction term, enhancing separation between the patterns. We derive novel scaling laws for sequence capacity with respect to network size, significantly outperforming existing scaling laws for models based on traditional Hopfield networks, and verify these theoretical results with numerical simulation. Moreover, we introduce a generalized pseudoinverse rule to recall sequences of highly correlated patterns. Finally, we extend this model to store sequences with variable timing between states' transitions and describe a biologically-plausible implementation, with connections to motor neuroscience.Comment: NeurIPS 2023 Camera-Ready, 41 page

    Morphogenesis at criticality

    Full text link
    Spatial patterns in the early fruit fly embryo emerge from a network of interactions among transcription factors, the gap genes, driven by maternal inputs. Such networks can exhibit many qualitatively different behaviors, separated by critical surfaces. At criticality, we should observe strong correlations in the fluctuations of different genes around their mean expression levels, a slowing of the dynamics along some but not all directions in the space of possible expression levels, correlations of expression fluctuations over long distances in the embryo, and departures from a Gaussian distribution of these fluctuations. Analysis of recent experiments on the gap gene network shows that all these signatures are observed, and that the different signatures are related in ways predicted by theory. Although there might be other explanations for these individual phenomena, the confluence of evidence suggests that this genetic network is tuned to criticality
    corecore